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Optimal Design of Stiffened Laminated Plates
Using a Homotopy Method

Yung-Seok Shin*
(Received May 11. 1993)

The use of a homotopy method is demonstrated for optimal design of a stiffened laminated
plate for maximum buckling load. Instead of obtaining a single optimum, the homotopy

te,chnique generates in a single computer execution an entire family of optimum designs with a

given parameter. In the present application the parameter is set to the total structural weight, and
the optimal designs are obtained as a function of the weight of the laminated plates. It is seen

that the number of simultaneous buckling modes of optimum plates is increased as the total
w1eight is increased. So for low weights the optimal design starts with unimodal design and for

higher weight the optimal design becomes bimodal, trimodal, and finally it becomes tetramodal.
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1. Introduction

Conventionally, structural optimization is per­

formed by either mathematical programming
methods or optimality criteria methods. Both type

of methods are based on iterative resizing of

structUres in the expectation that it will lead to the
satisfaction of optimality conditions in the end of

the optimization process. An alternative approach

to find the optimal design is to treat the

optimality conditions as a set of nonlinear equa­
tions and to solve them directly. This approach

was rarely used in the past, first beacuse of the
difficulty in dealing with such a large system of

equations, and second because of multiplicity of

solutions (mostly nonoptimal). Recent develop­
ments (Dennice and Schnabel, 1983) in methods

for solving nonlinear equations make the direct
solution of the optimality conditions more attrac­
tive. The difficulty arising from the multiple solu­

tions is due to highly nonlinear nature of
optimality conditions, however, the second order
optimality check was shown to work effectively to
identify the correct solutions (Shin, Haftka and
Plaut, 1988a). Still another difficulty is that
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Newton-type methods, typically used to solve the

nonlinear optimality conditions, an: not guaran­
teed to converge unless the initial estimate is very

close to the solution. A tracing technique was

developed to eliminate this difficulty of conver­
gence (Shin et aI., 1988b, 1989). The tracing

technique employs a homotopy method to locate

the optimal solution with guaranteed conver­
gence. The theory of globally convergent

homotopy methods which are used in this study
was developed in 1976 (Watson, 1979a, 1979b)

and has been applied to solve a number of engi­

neering problems. The full context of the theory
and its applications are well documented in refer­
ence (Watson, 1986).

In this paper the use of the homotopy method is
demonstrated for optimal design of a stiffened

laminated palte for maximum buckling load. In

many design problems with buckling load con­
straints, the optimal solutions are known to have
repeated eigenvalues as their lowlest buckling

loads. The homotopy method in references (Shin
et aI., 1988b, 1989) is based on two different
formulations that are applied separately to find

the unimodal and bimodal solutions. This paper
proposed a new procedure for handling problems
when there are more than two buckling modes

associated with the optimal design and the proce-
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Fig. 1 Stiffened plate under inplane load
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The finite element discretization of the above

Fig. 2 Geometry of half of a 2n-layered symmetric
laminate

top, and one on bottom of the plate. Each of the

geometric quantities and the material properties

can be normalized dividing by the span length, L,

or the layer stiffness of plate in fiber direction,

E 110 as follows:

Then, we get the differential Eq. (I) also in
nondimensional form:

(I)

(2)

2. Stiffened Composite Plate

dure is applied to find optimal designs of a stif­

fened laminated plate for different values of the
total plate weight.

where W is the transverse deflection of the beam,

a prime(') denotes differentiation with respect to
the longitudinal coordinate X, and Pb is the

beam axial load. Young's modulus of the beam in
longitudinal direction is denoted by E b , and the

second moment of inertia of the beam is denoted

by lb and can be expressed as follows:

The plate considered in this study is square and

simply supported along all four edges, as shown
in Fig. I. The plate has a symmetric (top and

bottom) blade stiffener at center and is subjected
to in-plane loads in the X-direction. Two forms of

buckling of the stiffened plate are considered: the
plate and stiffener, as one unit, can buckle in an

overall buckling mode; and the blade stiffener in
itself can undergo local buckling. The buckling

analyses of these two are performed separately.

For the case of the overall plate buckling, the

blade stiffener is treated as a beam reinforcing the

plate. A finite element formulation is used, and
the stiffness matrix and geometric stiffness matrix

of the beam are calculated and combined with the

corresponding matrices of the base plate. For the

case of local stiffener buckling, the blade stiffener
is treated as an independent plate subject to an

in-plane compressive load. Assuming that three

sides are simply supported and the fourth side is
free we can obtain the local buckling load of the

stiffener analytically.

2.1 Overall plate buckling analysis
As the stiffener is treated as a beam, the govern­

ing differential equation is

h= ; B{(H + TT)3- TT3},

where B is the width, H is the height of the

stiffener and TT is half the total thickness of the
laminate plate on which the stiffener is placed
(see Figs. I and 2). The factor of 2 in the expres­

sion for h accounts for the two stiffeners, one on
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beam equation leads to

[K]b{ Vh~ Pb[Ke]b{ V}b=O, (5)

where ::Kh is the global beam stiffness matrix,
[Ke]b is the global beam geometric stiffness
matrix, and {V} b is the generalized global dis­
placement vector of the beam which has 2 degree-

of-freedlom{w, :} at each node.

For the plate buckling analysis a 16 degree-of­

freedom plate finite element (Yang, (986) is used
yielding the equation,

where [K] is the global plate stiffness matrix.

[Ke ] is the global plate geometric stiffness matrix.
and {V} is the generalized global displacement
vector of the plate which has 4 degree-of-freedom

{ alA) aw azww'-a--' ~a'-a-a-} at each node.x y x y

Sinet: the terms wand 1;; in the vector {V} b

in Eq. (5) are equivalent to the terms w and -~

in the vector {V} in Eq. (6), these two equations

can be combined to get one matrix equation for

overall buckling of the plate and stffener. The
overall equation is

(9)

( 10)

( 12)

[a] =2 ±[q]k(Zh - Zh+l)'
k=l

[Kh{ U} - p[Kelr{ V} =0,

are the nondimensional elastic moduli of the
laminated plate and the beam. The expression for
ep are obtained from

Now the overall buckling equation can be written
in the form,

[K]{ V} - [K]b{ V} - p(g I [Ke]{ V} - g2[Kdb{ V}) =0.

(II)

where [a] is the nondimensional stretching stiff­
ness matrix expressed as (see Fig. 2)

In above equation, n is half the number of total

layers in plate, [i is the nondimensional reduced

stiffness of the laminate, and Zh is the nondimen­

sional distance of each layer measured from the
center of the laminate. Equation (7) may be
written now as

where [K] T is the total stiffness of the plate and

stiffener combination and [Ke]r is the total geo­

metric stiffness of the plate and stiffener combina­
tion. This generalized eigenvalue problem is

solved using the DNLASO subroutine from the
package LAS02 (Scott and Parlett, 1983), which

computes a few eigenvalues and associated

eigenvectors of a large (sparse) symmetric matrix

using the Lanczos algorithm (Golub, Underwood
and Wilkinson, 1972).

2.2 Stiffener local buckling analysis
The local buckling of the stiffener is analyzed

separately from the overall plate analysis. The

stiffener is treated as a plate which is simply

supported at 3 edges (X=O, X=L Z=O) and is
free at one edge (Z=H). It is subject to axial

compressive load Ps . Because two opposite sides
are simply supported, this problem can be solved
analytically. The governing partial differential

equation for the orthotropic plate buckling prob­
lem is given from (Jones, 1975) as

(6)[K]{ V} - nAKe]{ V} =0,

, 1= epsp
.7 epsp + ebSb '

[K]{ V} +LK]b{ V} - nAKc]{ V} - Pb[Ke]b{ V},=O (7)

where [K] and [K]b are the plate and the beam

stiffness matrix, respectively, [Kc] and [Keh are
the plate and the beam geometric stiffness matrix,

respectively. The matrices [K]b and [Kr;]b are

transformed from the matrices [K]b and [Ke]b to
fit into the generalized displacement vector of

plate {U}. The load carried by the beam is jib and

the load carried by the plate is nx. These loads
are proportional to the extensional stiffness of
each. So the total load p on the stiffened plate is

distributed as pg I to the plate and pg2 to the
stiffener, where g I and g2 are expressed as fol­
lows:

where Sp and S6 are the nondimensional cross­

sectional area of plate and beam, and ep and eo

g2 ebsb
epsp+ e~sb'

(8)
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(16)

where pi, p2, and p3 are the first three overall

and t, min:s:ti:s:t,max for i=l, 2, "', (n+2),
(17)

the buckling load Ps can be solved directly and
the nondimensional buckling load Ps is obtained

from the relation

buckling loads of the stiffened plate which are

obtained from overall FEM analysis, Ps is the
local buckling load of the stiffener obtained ana­
lytically, and 8 is the nondimensional total plate

volume. The variable /3 is introduced to avoid
having to maximize the minimum of pi, p2, p3,
and Ps which is not a smooth function. The

coefficients of 0.999, and 0.998 in the second and
third constraints, are necessary to keep the

eigenvalues pi, p2, and p3 distinct when the

buckling mode is bimodal or trimodal, and allow
the calculation of derivatives of these buckling

loads.
A typical optimization method, applied to

solve this problem, starts from a given design and

continuously searches for better designs until it

finds one optimum design. The intermediate
designs along the path are of no interest to the

structural designer. Here, instead, we use a meth­

od which traces an entire one-parameter family of

optimal designs without going through any inter­

mediate nonoptimal designs. For this we employ

the homotopy method, a technique which has

been used widely to solve nonlinear systems of
equations. The basic idea of the method is to

convert the system of equations into a set of

ordinary differential equations with a parameter,

called a homotopy parameter. Under certain as­
sumptions, the method is guaranteed to converge

to a solution even for highly nonlinear problems

for which Newton-type iteration methods fail.

The variable 8 is chosen as the homotopy par­

ameter, and for the initial conditions of the initial

value problem we use the minimum-thickness
plate in which all design variables at their lower

bound. A sequence of optima corresponding to
varying 8 form the solution trajectory of the
initial value problem. This use of the homotopy

method for tracing optima was demonstrated in
references (Shin et aI., 1988b, 1989) only with

equality constraints. Here the method is used with
the formulation in which inequality constraints
can be inclueded.

The equations defining the path of optimal

designs are obtained using Lagrange multipliers,
and are solved by the homotopy method. The

optimum path consits of several smooth segments,

(14)

( 15)

3. Optimization Problem

I
Ps= E L Ps'

n

where ti max and ti min are upper and lower

bounds on the design variables, respectively, and

n is half the number of layers for the symmetric

laminate.
The optimization problem for maximizing the

buckling load is written as

max /3,
/3, ti ,

such that pi:? /3,
0.999p2:? /3,
0.998p3:?/3,

Ps:?/3,

2± t i +2tn+dn+2- 8=0,
i=l

The optimization problem is to maximize the

buckling load of the blade stiffened plate for a

given total material volume (which is propor­
tional to the total weight). The design variables

are set as the nondimensional thickness of the

individual lamina, ti , and the nondimensional

width and height of the stiffener. Here the non­

dimensional width, b, and the nondimensional

height, h, of the stiffener are denoted as tn + 1 and

tn+2 , respectively. The nondimensional design
variables, t i , are subject to side constraints of

ti min:s:ti:s:ti max for i=l, 2, ... , (n+2),

where V is the plate deflection, Dij are the com­
ponents of the bending stiffness matrix, and Ps

refers to the stiffener local buckling load. By

applying the boundary conditions and assuming a
Levy's solution of the form,

V = m~~.5 F(Z)msin mlX ,
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t - yl- y2- y3- y4=0,

yl1h..+O.999 y2 apz +0.998 yJ-j}.k+y~
ali ali ali ali

wher,e yl, y2, y3, y4, and /L are Lagrange multi­

pliers and rj, rz, r3' and r4 are slack variables.
Taking the first derivatives of (3* with respect to

all these variables and setting them equal to zero,
we obtain the stationary conditions,

with breaks in smoothness at points where the
active constraint set changes. Changes in active

constraints are associated with inequality con­
straints (here bound constraints on each of design

variables) whjich may become active or inactive

along the path. Along each segment, the active
inequality constraints are treated as equality con­

straints,

(23)

(24)

(21)

y;20, for i= I, 2, 3, 4.

Y I(pl -(3) =0,

y2(0.999pz-(3)=0,

y3(0.998p3- (3}=0,

y4(Ps-(3) =0,

2± li+2In+lln+z- B=O,
i=l

Yl,= - yl ~,I-0.999 y21~:--0.998

3 ap3 4 apb .. -
y -ali'- y ali'+ c,1' lor li- Imln ,

112,=yl ~1,1 +0.999 Y2-~: +0.998

3lk .afJb_. .. I - (22)y ali +y7 Gil' ,or ,- Imax '

A transition of type 3 is detected by checking

the buckling load constraints;

P12j3,
0.999 p22(3,

0.998 p32(3,

Ps2j3,

A transition of type 4 is detected by checking if
the Lagrange multipliers associated with the
buckling load constraints are positive;

where Ci are the components of a coefficient

vector, {2, 2, ···,2, 2In+z, 2In+1}T. These equations
form a system of nonlinear equations to be solved
for optimal design. The homotopy method is used

to find the solution of these equations for varying

B.
3.2 Locating transition points
There are four types of transitions:

Type I : a bound constraint becoming active (i. e.,
being satisfied as an equality),

Type 2 : a bound constraint becoming inactive,

Type 3 : an inequality buckling load constraint
becoming active,

Type 4: an inequality buckling load constraint

becoming inactive.

Transition points of type I ar located by check­
ing the bound constraints (16). Transition points

of type 2 are detected by checking positiveness of

all Lagrange multipliers for bound constraints.

These multipliers are given by

(19)and

such that pI2(3,

0.999p22j3,

0.998p32j3,

Ps 2(3,

2± 1,+2In+dn+z- =0.
i=l

The solution of the above problem requires

dealing with three related problems: (I) solving
the optimization problem along a segment, (2)

locating the end of the segment where the set fA

changes, and (3) finding the set fA for the next

segment.
3.J Stationary conditions
Using the Lagrange multiplier technique, the

Lagrangian function (3* is

(3*=(3- yl«(3+ rl z- pI)
- y2«(3+ r2z-0.999p2)

y3«(3+ yff-0.998p3)

- y4«(3+ y/- Ps)

-/L(2±li+2In+dn+z-B), (20)
i=l

Ij = Ij min or t= Ij max for jEfA' (18)

where fA is the set of indices of design variables
which are at a lower or upper bound. These

variables are eliminated from the optimization

problem, while the other variables are left uncon­
strained. The optimization problem along a seg­

ment can, therefore, be written as

max (3 for i$.fA'
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Fig. 3 Optimal dimensions of the plate in the total
range

4. Results

A graphite/epoxy composite plate is selected

whose material properties are given as follow:

E ll =21.374x 10IOpA31.0 X 106ps,), E 22 =2.33 x 1010

Pa(3.4 X 10 6 psi)' G12= 0.517 X IO IOPa(0.75 X 10 6

Ps,), 1hz =0.28.
Optimization results are shown for (O D /90°)s

symmetric laminate with a blade-stiffener made

from 00 material. Design variables include the ply
thicknesses, the stiffener height, and the stiffener

width. This laminate consists of four layers: how­

ever, only two of them are treated as design
variables due to symmetry. The nondimensional

minimum gage, tmin , is set at 0.001 for all the

design variables. The nondimensional total vol­

ume of the plate are expressen as 8 = 2( tl + t2

+ bh). And the design starts from 8=0.004002

where all design variables are at the minimum

gage.
Figure 3 shows the nondimensional value of

layer thicknesses, tl and t2, and the nondimen­

sional width and the height, band h, of the

optimal design obtained for 0.004002::;; 8::;;0.04.

At a transitIOn point there are a number of
solution paths which satisfy the stationary equa­

tions, so we need to choose a path which satisies

the optimality conditions. Following discussion
explains this procedure.

3.3 Choosing an optimum path
Once a transition point is located, we need to

choose a path which satisfies the optimality con­

ditions. Choosing an optimum path constitutes
finding a set of active bound constraints for type

I and type 2 transitions and the correct buckling

modes for type 3 and type 4 transitions. These are
obtained by using the Lagrange multipliers of the

previous path and the sensitivity calculation on

the buckling load. The procedure is explained

separately for each type of transition.
A type I transition occurs when one of design

variables, ti , hits the upper or lower bound. Then

t, is set at ti max or ti min and treated as a
constant value. The number of design variables is

reduced by one.

At a type 2 transition, one of the Lagrange

multipliers for the bound constraints, Ali and A2i,
is found to be negative. The bound constraint

corresponding to the negative Ali or A2i is set to be
inactive and the number of design variables is

increased by one.
A transition of type 3 is located by a buckling

load p that becomes smaller tha (3. Then the
constraint for the buckling load is treated as an

active constraint.

At a type 4 transition, One of the Lagrange

multipliers for the buckling load constraints, y" is
known to be negative from the previous transition

check, so the constraint corresponding to the

negative y, is treated as inactive.

After we find the active design variables t and
the active buckling load constraints, we can set
the value of Lagrange multipliers, y, for inactive
constraints as zero. Then we only need to deter­

mine the values of active Lagrange multipliers y,

and f1 at the transition point to complete the set of
starting values for the next solution path. These
are obtained by solving the stationary conditions
(21) for given t which is a system of linear
equations for these variables.



Optimal Design of Stiffened Laminated Plates Using a Homotopy Method 405

0.024-r---------------,

~ .. ~ __ • __ • _.~ ••• _ •• _ .. _ ••••••• •••••••••••• 0' ••••••••••

0.040.030.020.01

E]:~...... _._.... p3

----- ps

00+0 +-........_.o!!::r=--~-r----.---~-l
0.00

40..4,....----------------,

10-4

30..4

Total voIumo

1
...J 20.4
'".5'
~
ell

0.00440.0043

~
:~

•••••••••• b

--- h

0.00420.0041

0.008

0.004

0.000+----.--~---r-~-_r-~-_t
0.0040

0.012

0.016

0.020

Total Volum.
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Fig. 5 Nondimensional buckling loads in the total
range
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Fig. 6 Nondimensional buckling loads in the ini­
tial range

the same value. From this point on the minimum
gage limit for It which is the layer thickness
corresponding to the 90 0 fibers, becomes inactive

and II starts to increase. Interestingly, it is seen
that all 4 buckling loads merge together momen­
tarily in the very short range of O.00415~8~0.

00420. And for the range ofO.01132~ 8~0.02440,

the optimal designs become bimodal again.

Figure 4 is a blowup of this in the region of O.

oo4002~ 8~0.0044. In Fig. 5, the first three

nondimensional buckling loads, Ph P2' P3 and the
stim:ner buckling load, Ps, of the optimal design

are :;hown for 0.004002 ~ 8 ~0.04 and its blowup

in the range ofO.004002~8~0.0044 is shown in

Fig. 6.

Initially the optimum design starts with a
unimodal design. The constraint for the first

buckling load of the plate structure, PI' is only
active. The optimal design changes only the

height of the stiffener while the other 3 design

variables are at the minimum gage. When the
total volume reaches at 0.004036, the constraint

for the stiffener local buckling load, Ps, also

becomes active, so that the design becomes
bimodal. The width and the height of the stiffener

change at the same time from this point. It is
noticed that, up to this point, the total volume is

incH:ased only by 0.9% but the buckling load is
incH:ased by 148.1 %. This shows the efficiency of
the stiffener in designing composite plate struc­
tures which are subject to in..plane loads.

As 8 approaches 0.004073, optimal designs
become trimodal, i. e., first two overall buckling

loads and the local stiffener buckling load have
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After 8 exceeds 0.03770 all 4 buckling load
constraints become active and the buckling loads

hold the same value (i. e., the 3 lowest eigenvalues

and Ps have the same value). At this point all 4
minimum gage constraints become inactive. The

overall buckling modes of the opimal design for 8
=0.015 are shown in Fig. 7 and for 8=0.04 in
Fig. 8.

Fig. 7 Overall plate buckling mode of the optimal
design (8=0.015)

Fig. 8 Overall plate buckling modes of the optimal
design (8=0.04)

5. Concluding Remarks

The use of the homotpy method is first motivat­

ed by the need to identify the optimum from other
solutions of the optimality conditions. However,

it has been found out to have a unique advatage
over other conventional optimization techniques.

Instead of obtaining a single optimum, which is

typical of other methods, the homotopy technique

generates in a single computer execution an entire
family of optimum designs with a given parame­

ter. This paper shows the technique can be im­

plemented in a rater simple form for a problem

having more than two buckling modes associated

with the optimal design. Even though the paper
discusses the use of homotopy technique in find­

ing multiple optima parameterized by the total

volume of a structure, it may be modified to solve
a problem of a single optimum when the total

structural volume is given. So, for future research,

it is recommended to study the way how the

technique cna be applied for a single optimum as
well as its efficiency comparing to other search

methods.
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